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SUMMARY 

A numerical simulation capability for the injector flow of a regenerative liquid propellant gun (RLPG) is 
presented. The problem involves fairly complex geometries and two pistons in relative motion; therefore a 
stabilized space-time finite element formulation developed earlier and capable of handling flows with moving 
mechanical components is used. In addition to the specifics of the numerical method, its application to a 30 mm 
U P G  test firing is discussed. The computational data from the simulation of this test case are interpreted to 
provide information on flow characteristics, with emphasis on the tendency of the flow to separate from the 
injection orifice boundary of the test problem. In addition, the computations provided insight into the behaviour of 
the flow entering the combustion chamber. 
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1. INTRODUCTION 

Recent advances in finite element strategies to solve compressible flow problems have allowed the 
equations describing challenging applied problems to be solved. The problems investigated in this 
paper involve nearly incompressible, barotropic flows. In particular, we are interested in orifice flows 
between moving mechanical components which are driven by large pressure differentials. Data 
describing such flows are limited and are often gathered far from the region of primary interest; thus, 
such data serve only to establish confidence in the model. Furthermore, the physics and dynamics of 
nearly incompressible flows at high pressure over complicated geometries are not yet fully understood. 
In particular, better understanding of thermal characteristics and the potential of the flow to remain 
attached to the boundary and to develop vortices is needed to design injectors for such flows. 

Such problems pose a numerical challenge because the method must be able to handle complex, 
moving geometries and be sufficiently robust to handle the extreme range of flow conditions. The finite 
element method is ideally suited for this class of problems because of its inherent geometric flexibility. 
Since grid indexing is not necessary, unstructured grids which are often needed to effectively solve for 
flow fields over complex geometries are permitted. In addition, most calculations can be efficiently 
performed in an element-by-element fashion to carry out the large-scale, time-dependent, non-linear 
computations on supercomputers. 

In the specific problem examined in this paper, the changes in the geometry of the problem 
require a formulation that can handle moving boundaries and interfaces. The deformable spatial 
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domaidstabilized space-time (DSD/SST) formulation introduced earlier',* has this capability. This is 
an accurate, general-purpose, stabilized finite element formulation for computation of unsteady flow 
problems involving free surfaces, two-liquid interfaces, moving mechanical components and fluid- 
structure and fluid-particle interactions. In the DSD/SST method the stabilized finite element 
formulation of the governing equations is written over the space-time domain of the problem and 
therefore the deformation of the spatial domain with respect to time is taken into account automatically. 
Furthermore, with the advanced stabilization techniques used in the DSD/SST formulation, the 
numerical stability challenges involved in the problem are overcome without introducing excessive 
numerical dissipation and therefore with minimal loss of accuracy. 

The applied problem of interest involves injector flow in the orifice of a regenerative liquid 
propellant gun (RLPG) studied by the Weapons Technology Directorate (WTD) of the U.S. Army 
Research Laboratory (ARL), Aberdeen Proving Ground, MD. In the RLPG a liquid monopropellant is 
injected at high pressure through the annulus formed by two moving pistons into the combustion 
chamber of the gun. Subsequently the propellant undergoes an intricate series of processes including 
jet break-up and combustion at gun pressures in the range 0.1-500 MPa over approximately 25 ms. 
Fluid flow from the liquid reservoir and through the injector may influence the jet behaviour as well as 
contribute to occasional flow reversal observed in experimental data. 

Current U.S. Army injector designs have evolved empirically based on smooth, experimentally 
measured piston motion and mass flow rate requirements. In general, current designs have provided 
satisfactory results. However, modifications to the injector designs have been observed to yield 
unexpected effects in some tests, indicating a lack of fundamental understanding of fluid flow in the 
injector and conditions leading to flow separation and cavitation. 

The mathematical modelling of this problem is based on the Navier-Stokes equations of 
compressible flows for the fluid, the equations governing the dynamics of moving components and the 
interface conditions governing the interaction between the fluid and the moving components. This 
results in a time-dependent, non-linear, partial differential equation system which needs to be solved 
over an intricate computational domain that changes its shape with time. The change in the shape of the 
computational domain is one of the unknowns of the problem and needs to be determined as part of the 
overall solution. 

2. GOVERNING EQUATIONS 

The compressibility of liquids is measured in terms of the bulk modulus, which gives the variation in 
pressure for a fractional change in density at a constant temperature: 

K = P($)Q 

Here K ,  p ,  p and 0 are the bulk modulus, pressure, density and temperature respectively. For liquids the 
bulk modulus is typically very large (in the range of billions of pascals in our case), meaning that the 
compressibility is very small. 

In problems where the pressure is of the same order of magnitude as the bulk modulus, such as in 
the RLPG, the compressibility of the working fluid plays an important role. Although the variations in 
density are small, they still lead to large variations in pressure. In such cases the liquid is usually 
modelled as a barotropic fluid. In barotropic fluids the pressure is assumed to be only a function of 
density. A simple equation of state which relates the pressure to the density can be obtained by 
assuming that the bulk modulus is a linear function of pressure: 

K = K1 + Kzp, (2) 
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where K1 is the bulk modulus at zero gauge pressure and K1 is a dimensionless constant. The solution 
of the differential equation (1) combined with (2) yields 

The barotropic fluid assumption decouples the energy equation from the governing equations, and 
the equations of conservation of mass and momentum suffice to describe the flow field characteristic of 
the RLPG. These equations in conservation law form can be written as 

(4) 
aP 
- + V-(pu) = 0 on SZ, Vt E (0, T ) ,  
at 

where T is the time period and R, is the spatial domain at time f, with boundary Tr Here u is the 
velocity and T is the Newtonian viscous stress tensor: 

T = ~ [ V U  + ( V U ) ~ ]  + A(V*U)I, (6) 

In terms of conservation variables the axisymmetric version of equations (4) and (5) can be written as 

au aFz aF, u, 
- + - + - + -U - V - E  = 0 on R, Vt E (0, T)?  
at az ar r 

where U = (p ,  pu,, pu,) is the vector of conservation variables and F,, Fr and E are given as 

To provide a convenient set-up for our finite element formulation, equation (8) is written in the form 

au au au u, 
- + A z - + A r - + + U - V * E = O  onSZ, VtE(O,T), 
at az ar r 

where A, and A, are the Jacobians of F, and F, with respect to U. Equation (10) is complemented with 
initial and boundary conditions of the form 

U(x, 0) = UO on Szo, (1 1) 

(En).ek = hk On (r,),,, k = 1, . . . , ndof, (13) 

where ek is an orthonormal basis function in R""' and ndof is the number of degrees of freedom, which 
in the current problem is three. 

3. SPACE-TIME FINITE ELEMENT FORMULATION 

The formulation used in this research is an axisymmetric extension of the formulation introduced in 
Reference 2. In the DSD/SST formulation we partition the time interval (0, T )  into subintervals 
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I, = (t,, tn+l)r where t ,  and tn+l belong to an ordered series of time levels 0 =to < t ,  < . . . < tN= 7: 
Let R, = R, and r, = Tt,. We define the space-time slab Q, as the domain enclosed by the surfaces 
a,,, a,,,, and P,, where P, is the surface described by the boundary T t  as t traverses I,,. 

The finite element discretization of a space-time slab Q,, is achieved by dividing it into elements a, 
e = 1, 2, . . ., riel, where ne1 is the number of elements in the space-time slab Q,,. Based on this 
discretization, we define appropriate finite element function spaces 5%'; and -Y: corresponding to the 
trial solutions and weighting functions respectively. 

The DSD/SST formulation of equation (10) can be written as follows: start with 

(Uh), = u;, (14) 

and sequentially for el, Q 2 ,  . . ., Q N - ~ ,  given (Uh),, find Uh E 5%'; such that Wh E -Y: 

W h  - (z at + A," az + A: @ ar + u:u")dQ r + IQn VWh:Eh dQ + 1 (Wh),' .[(Uh),' - (Uh);] dS2 
0. 

e =  1 

Wh'hh dP. awh auh awh auh 
e =  1 

In the variational formulation given by (15), the following notation is used: 

IPn (. . .)dp = 1 (. . .) d r  dt. 
I. r, 

In this formulation the first three integrals together with the right-hand-side integral represent the 
time-discontinuous Galerkin formulation of the problem. The third integral enforces weakly, the 
continuity of the conservation variables across the space-time slabs. The first series of element-level 
integrals in equation (1 5) represents the SUPG stabilization terms and the second series represents the 
shock-capturing terms added to the formulation. The definition of the stabilization coefficients used in 
this formulation can be found in Reference 3. 

4. DESCRIPTION OF THE RLPG 

The RLPG is a propulsion concept under exploration by the US. Army which utilizes a liquid 
monopropellant as the fuel instead of traditional solid propellants. A schematic diagram of the interior 
of the gun is shown in Figure 1. The liquid propellant is loaded into the liquid reservoir behind the 
pistons before the firing cycle commences. To initiate the regenerative process, gas from an external 
source (not shown in the figure) raises the combustion chamber pressure. The inside piston, referred to 
as the control piston, moves first in response to the rise in combustion chamber pressure and its motion 
is modulated by a mechanically controlled damper in the rear of the gun. The outside piston, referred to 
as the injection piston, follows the motion of the control piston due to the differential area on the liquid 
reservoir and combustion chamber sides of the piston. Thus the motion of the two pistons is 
independent, although coupled via the liquid and combustion chamber pressures. 
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Figure 1, Regenerative liquid propellant gun (RLPG) 

The liquid propellant in the reservoir flows through the annulus created between the two pistons into 
the combustion chamber where it combusts, raising the combustion chamber pressure and accelerating 
the projectile. An attractive feature of this design is that the flow of the propellant is inherently 
modulated by conditions in the liquid resorvoir and combustion chamber. For example, if the 
combustion chamber pressure rises rapidly, the injection piston will move faster, reducing the supply of 
propellant to the combustion chamber, lowering the combustion chamber pressure and re-establishing 
the pressure balance between the liquid reservoir and the combustion chamber. This is possible as long 
as a positive pressure gradient is maintained between the liquid reservoir and the combustion chamber. 

Many injector geometries have been researched to promote smooth fluid flow and to minimize the 
risk of pressure gradient reversals. In the problem discussed in this paper, we investigate the geometry 
associated with a 30 mm RLPG, i.e. the bore of the gun has a diameter of 30 mm, fired at the WTD/ 
ARL. The geometry of the reservoir and the orifice of the RLPG are axisymmetric. 

During the routine firing cycle of the RLPG, only the liquid propellant is present in the injector 
region. Vaporization of the propellant and combustion of this vapour occur some distance downstream 
of the injector in the combustion chamber. It is therefore reasonable to assume that the local effects 
from such phase changes in the region of interest will be small enough to model the flow through the 
injector as a single-phase flow. Furthermore, since heat transfer and temperature changes in the liquid 
propellant in the reservoir are also expected to be small: the energy equation can be left out of the 
analysis. 

In the experimental firing the propellant used is XM46, a monopropellant composed of hydroxyl 
ammonium nitrate, triethanol ammonium nitrate and water. The physical properties of the propellant 
have been extensively investigated and the propellant compressibility at gun conditions cannot be 
ignored. Thus a compressible equation of state (3) for XM46 is implemented with coefficients 
K ,  = 5350 MPa, K2 = 9.1 1 and po = 1430 kg/m3 (see reference 5) .  
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Figure 2. RLPG liquid reservoir, injector, combustion chamber and beginning of tube 

5. NUMERICAL SIMULATION OF THE INJECTOR REGION OF THE 30 mm RLPG 

5.1. Piston motion and boundaly conditions 

The liquid reservoir, injection orifice, combustion chamber and a portion of the bore are shown in 
Figure 2. As indicated in the diagram, the computational domain does not include the entire 
combustion chamber. The right-hand boundary of the domain in the combustion chamber is placed a 
short distance, compared with the length of the combustion chamber, from the nose of the inner piston. 
There are two principles guiding the placement of this boundary. 

Despite the absence of combustion in the model, the effect of physical combustion occurring in the 
combustion chamber must be included. This is accomplished through the choice of the boundary 
conditions on the right-hand boundary. The mean, experimental chamber pressure is imposed here as 
measured by the pressure gauge mounted in the chamber wall nearest to this region. Placing this 
boundary in the interior of the chamber means that the pressure is imposed near where the data were 
recorded. In addition, the location represents a position at which fluid expansion and interaction with 
the gas are expected to induced atomization and subsequent combustion. 

Secondly, this boundary is placed downstream far enough so that recirculation zones occurring on 
the chamber side of the pistons can be captured. However, these recirculation zones, combined with the 
pressure variation on this boundary, are enough to cause inflow through a stationary boundary. To 
minimize the effects of inflow, this boundary moves with the inner piston towards the rear of the gun as 
the simulation of the firing cycle proceeds. 

The pistons and walls of the gun are assumed to be rigid, undergoing no deformation during the 
simulation. In the physical system the motion of the inner (control) piston is governed by the fluid 
pressure on its surface and a damper located behind the transducer block in the rear of the gun. To 
prevent the otherwise necessary simulation of the damper, the motion of the control piston is also taken 
from experimental data. The motion of the outer (injection) piston is computed based on the mass of 
the piston and the pressure forces acting on it. Viscous forces, since they are small compared with the 
pressure forces, are neglected in computing the motion of the injection piston. On all solid walls in the 
domain, no-slip boundary conditions are imposed. 
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Figure 3.  Mesh at r=4 ,4  ms 

5.2. Mesh update strategy 
The finite element mesh over the initial configuration of the computational domain is shown in 

Figure 3. This mesh was created with an automatic mesh generator to give a Delaunay-type mesh.6 The 
changes in the geometry of the problem due to the motions of the pistons require the finite element 
mesh to be updated every time step. This is achieved by using a mesh update strategy that minimizes 
the frequency of remeshing. In the DSD/SST formulation the mesh is updated in such a way that 
remeshing is performed only when it becomes necessary to do so to prevent unacceptable degrees of 
mesh distortion. In this case, at each time step of the computations, an automatic mesh-moving 
scheme’ is used to update the mesh as the pistons move. This automatic mesh-moving scheme is based 
on moving the mesh with the nodal displacements governed by the equations of elasticity. The motions 
of the pistons enter as boundary conditions associated with these equations. The computational domain 
still needs to be remeshed periodically to prevent excessive deformation of the mesh. 

Figures 4 - 6  show the mesh at t = 7.2, 8.9 and 10.6 ms respectively. During the time interval 
between 7.2 and 8.9 ms the pistons move with roughly the same velocity and therefore the mesh in the 
orifice area does not undergo a significant deformation. The mesh in the reservoir area, on the other 
hand, undergoes the largest deformation. Still, no remeshing takes place during this time interval and 
therefore the meshes shown in Figures 4 and 5 have the same number of elements and nodes (6126 
elements and 3295 nodes) and the same connectivity. One remeshing takes place in the time interval 
between the images depicted in Figures 5 and 6, with the mesh in Figure 6 having 6626 elements and 
3523 nodes. As the orifice closes in the later part of the firing cycle, the mesh generator creates smaller 
elements within this region in order to still be able to capture the dynamics in this region. This results 
in a refined grid in the neighbourhood of the orifice and the increase in the number of elements and 
nodes between Figures 5 and 6. The meshes used in this simulation range in sizes of 580CL8000 
elements and 3 150-4250 nodes. Again, this large range of mesh sizes is attributable to the variation in 
size of the orifice. 

5.3. Non-linear time-dependent computations and initial conditions 
Approximately 20,000 coupled non-linear fluid dynamics equations are solved at each time step. In 

addition, at each time step, linear equations governing the motions of the piston and mesh need to be 



988 G. P. WREN ETAL. 

Figure 4. Mesh at t = 7.2 ms 

solved. Multiple iterations are required to solve these equations at each time step because of the non- 
linearity of the fluid dynamics equations and also the coupling between the fluid flow and the piston 
and mesh motions. Depending on the selection of the initial conditions for the simulation, several 
iterations (up to 10) are needed during the first few time steps of the firing cycle. After that, typically 
two iterations per time step are sufficient. 

The selection of the initial conditions in this simulation needs particular attention. In the actual 
operation of the RLPG the pistons are initially touching, sealing the reservoir from the combustion 
chamber. Also initially the reservoir is prepressurized and the chamber is at atmospheric pressure. No 
attempt is made in this simulation to model the contact between the pistons and therefore the 
simulation is started with a finite gap between them. Keeping this gap small, with only one or two 

Figure 5. Mesh at t = 8.9 ms 
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Figure 6. Mesh as t =  10.6 ms 

elements across, numerically chokes the flow in the orifice and approximates the desired effect of 
having no flow through the orifice at the beginning. The initial conditions for pressure are generated by 
setting the reservoir pressure to the prepressurization value of the propellant and the chamber pressure 
to atmospheric pressure. For the purpose of setting the initial conditions, the pressure between these 
two regions is assumed to vary linearly over the length of the orifice. 

5.4. Results 

The simulation begins at a time t=4.4 ms in the experimental data. In the test firings, during the 
time span from 0.0 to 4.4 ms, the ignition sequence takes place, which is not of interest to this study. 
However, in keeping with the timing of the experimental firing cycle, this initial time was chosen. 

To compare the computations from the DSD/SST model with those from the test firings of the 
30 mm RLPG, the results are compared with those from a lumped parameter model of the gun,5 which 
agree quite well with the experimental liquid, combustion chamber and damper pressures. The lumped 
parameter model was chosen for the comparison because there is some uncertainty in the experimental 
measurement of the piston positions. The calculated pressure at the centre of the transducer block at a 
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Figure 7 Pressure at transducer block: lumped parameter model of expenment and DSD/SST predichon 
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Figure 8. Motion of injector piston: lumped parameter model of experiment and DSD/SST prediction 

location corresponding to the position of the experimental liquid pressure gauge is compared with that 
from the lumped parameter model in Figure 7 and the agreement is quite favourable. Also, the motion 
of the injection piston from the current solution is compared with that from the lumped parameter code 
in Figure 8. Although the agreement is not as good as the comparison in liquid pressure, it is 
considered adequate to establish confidence in the DSD/SST model. 

Plates 1-3 show the Mach number and pressure at the three instants mentioned earlier, namely 
t =  7.2, 8.9 and 10.6 ms respectively. Early in the firing cycle the flow outside of the injector follows 
the contour of the outer piston as the fluid enters the combustion chamber at low speed. As the 
injection cycle progresses and the flow becomes hlly developed with a higher velocity, a recirculation 
zone appears on the chamber side of the outer piston. Interestingly, at both times the fluid appears to 
lift from the inner piston just downstream of the injection orifice. Thus the inner piston nose may be 
exposed to hot gases during the combustion process. However, we acknowledge that the computation 
does not include a model for jet break-up and combustion and that the observations discussed above 
may be modified in the actual gun environment. 

We now focus on the detailed view of the Mach number in the orifice shown below the hll view of 
the computational domain in Plates 1-3. The Mach number of the flow through the injection orifice 
formed by the smallest area between the two pistons is highest, as expected, and acceleration of the 
fluid can be seen at the injector entrance. A detailed examination of the Mach number distribution 
reveals that the flow shows no tendency to separate from either piston until after it passes through the 
orifice. This is desirable since flow separation upstream of the orifice may otherwise allow hot 
combustion gases to move into the orifice or even into the reservoir. This phenomenon is referred to as 
flow reversal and may lead to propellant ignition in these regions. 

The pressure images show that there is a very small pressure gradient from the rear to the front of the 
liquid reservoir, as expected, and a large gradient in the orifice as seen in the detailed view. The lack of 
an adverse pressure gradient and the small radial gradient compared with the axial gradient are also 
indications that the specific geometry of the injection orifice is well-designed for the nominal chamber 
pressure history imposed in the simulation. 

6. CONCLUDING REMARKS 

We have demonstrated that the numerical methods developed earlier for computation of compressible 
flow problems with moving mechanical components can be effectively applied to the simulation of the 
regenerative liquid propellant gun (RLPG). The stabilized, space-time finite element formulation 
employed here is capable of handling the complex geometries, moving pistons and large pressure 
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variations involved in this problem. Although we have reported in this paper only results fiom the 
simulation of the 30 mm RLPG, the techniques have also been applied to other RLPG configurations.8 
Based on these simulations, the methodology appears to be a sufficiently reliable diagnostic and design 
tool for injectors in the RLPG. 
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